HIGH LEVEL PERCENTAGE FOR SSC GD RPF  EXAM 2018||PERCENTAGE QUESTIONS PDF HINDI 2018||

HIGH LEVEL PERCENTAGE FOR SSC GD RPF  EXAM 2018||PERCENTAGE QUESTIONS PDF HINDI 2018||

Shobha’s Mathematics test had 75 problems i.e. 10 arithmetic, 30 algebra and 35 geometry problems. Although she answered 70% of the arithmetic, 40% of the algebra and 60% of the geometry problems correctly, she did not pass the test because she got less than 60% of the problems right . How many more question she would have needed to answer correctly to earn a 60% passing grade?

1 शोभा के गणित परीक्षण में 75 समस्याएं थीं यानी 10 अंकगणित, 30 बीजगणित और 35 ज्यामिति समस्याएं थीं। यद्यपि उन्होंने अंकगणित के 70%, बीजगणित का 40% और ज्यामिति समस्याओं का 60% सही ढंग से उत्तर दिया, लेकिन उन्होंने परीक्षण पास नहीं किया क्योंकि उन्हें 60% से कम समस्याएं मिलीं। 60% उत्तीर्ण ग्रेड अर्जित करने के लिए सही तरीके से जवाब देने के लिए उसे कितने और सवाल की आवश्यकता होगी?
2
4
5
7
C

Number of questions attempted correctly  = (70% of 10 + 40% of 30 +  60% of 35 )

⇒   (7 + 12 + 21)   =   40.

Questions to be answered correctly for 60% grade = 60% of 75 = 45 .

So, Required number of questions =  (45 –  40)  =  5.

Hence, option (C) is correct.

Fourty-five percent of a number is 30 less than three-fifth of that number . What is the number?
उस संख्या का चौथा-पांच प्रतिशत उस संख्या के तीन-पांचवें से 30 कम है। संख्या क्या है?
100
120
130
200
D

Let the number be x.

Then, 3  x  –  (45% of x) = 30
5
⇒   3  x  – 45  x  =  30.
5 100

   15 x  =  3000       x   = 200.

Hence, option (D) is correct.

Mr. Keisham gave 40%  of the money he had, to his wife. He also gave 20% of the remaining  amount to each of his three sons, Half of the amount now left was spent on miscellaneous item and the remaining amount of Rs. 12,000 was deposited in the bank. How much money did Mr. Keisham have initially ?
3 श्री केशम ने अपनी पत्नी को 40% धन दिया था। उन्होंने अपने प्रत्येक तीन बेटों को शेष राशि का 20% भी दिया, अब शेष राशि का आधा हिस्सा विविध वस्तुओं और शेष राशि पर खर्च किया गया था। 12,000 बैंक में जमा किया गया था। शुरुआत में श्री केशम ने कितना पैसा कमाया था?
1,000
10,000
1,00,000
10,00,000
C

Let the initial amount with Mr. Keisham be Rs. x.

Then, 1 [100 – (3 × 20)]% of (100 – 40)% of x = 12000.
2
⇒  1  × 40   × 60  ×  x  = 12000    3 x  = 12000.
2 100 100 25
   x  = ( 12000 × 25 )  = 100000.
3

Hence, option (C) is correct.

When the price of a product was decreased by 10%, then the number of sell increased by 30%. What was the effect on the total revenue ?
4 जब उत्पाद की कीमत 10% कम हो गई, तो बिक्री की संख्या में 30% की वृद्धि हुई। कुल राजस्व पर असर क्या था?
5%
10%
12%
17%
D
To solve this question, we can apply a short trick approach;

 Net% effect =   ( x + y +   xy ) %. 
100

Increase or decrease, according to the +ve or –ve sign respectively.

Given;

Price Increased = x = 30%

Price Decreased = y = – 10%

By the short trick approach, we get

= ( 30 – 10 – 30 × 10 )  = 17%.
100

Hence, option (D) is correct.

If the numerator of a fraction be increased by 15% and its denominator be diminished by 8%, the value of the fraction is 15/16 Find the original fraction.
 5 यदि किसी अंश का अंश 15% बढ़ाया जाता है और इसके संप्रदाय को 8% तक कम किया जाता है, तो अंश का मान 15/16 होता है। मूल अंश पाएं।
A
1
2
B
3
2
C
3
4
D
4
3
C
Let the original fraction be x .
y

Then, 115% of x  = 15  ⇒  115x  = 15
92% of y 16 92y 16

x   = ( 15   × 92 )   = 3 .
y 16 115 4

Hence, option (C) is correct.

The population of a town is 1,76,400. If it increase at the rate of 5% per annum, what will be its population 2 years hence?what was it 2 years ago?
1,94,481 and 1,60,000
1,43,564 and 1,20,000
1,56,342 and 2,00,000
3,22.968 and 3,40,000
A
Population after 2 years = 176400 × ( 1 + 5 ) 2
100
⇒    ( 176400 × 21   × 21 )   = 194481.
20 20
Population 2 years ago = 176400
( 1 + 5 ) 2
100
⇒  ( 176400  × 20  × 20 )   = 160000.
21 21

Hence, option (A) is correct.

In the new  budget, the price of Refined oil rose by 25%. By how much percent must a person reduce his consumption so that his expenditure on it does not increase?
10%
20%
25%
30%
B

Where R ⇒ the rose price of refined oil = 25%

Reduction in consumption  = [ R   × 100 ] %.
(100 + R)
( 25   × 100 ) %   = 20%.
125

Hence, option (B) is correct.

8
Deepika’s salary was decreased by 50% and subsequently increased by 50%. How much percent does she lose?
A
5%
B
10%
C
15%
D
25%
D

To solve this question, we can apply a short trick approach;

Net% effect =   ( x + y +   xy ) %.  
100
Increase or decrease, according to the +ve or –ve sign respectively.

Given;

Increased Number = x = 50%

Decreased Number = y = – 50%

By the short trick approach, we get

= ( 50 – 50 – 50 × 50 )  = – 25%.
100

Hence, option (D) is correct.

The monthly income of a person was reduced by 10%. By what percent should his reduced monthly income be raised so as to bring it at par with his original income?
A
2 3 %
4
B
1 3 %
4
C
11 1 %
9
D
11 %
9
C

Let the original monthly income be Rs. 100, New income = Rs. 90.

Increase on 90 (new income) = 10.Then,

Increase on 100 = ( 10   × 100 ) %  = 11 1  %.
90 9

Hence, option (C) is correct.

10 Difference of two numbers is 1660. If 7.5% of one number is 12.5% of the other number, Find the two numbers.
2490 and 4150
2090 and 4150
4537 and 7467
4625 and 4537
A
Let the number be x and y. then, 7.5% of x = 12.5% of y
⇒   x = 125 y  ⇒   5 y.
75 3
Now, x – y  = 1660   ⇒   5 y – y   = 1660  ⇒  2 y = 1660.
3 3
⇒    y = ( 1660 × 3 ) = 2490.
2
So,  One number = 2490,   Second number = 5 y = 4150.
3

Hence, option (A) is correct.

11. In a college Anjana scored 80 marks out of 150 in History and 95 marks out of 120 in English. If she wants to score 70% marks in 3 subjects, find the minimum marks she should score in Geography out of 100.
70
55
76
85
None of these
E

Total maximum marks = 100 + 120 + 150 = 370

Total marks in History and English = 95 + 80 = 175

Total marks required by her to get 70% = 370 × 70% = 259

So, she needs 259 – 175 = 84 marks to score 70%.

Hence, option E is correct.

12 What percentage of the whole week does Pirkandu spend in office, if his office hours are 9 am to 5 pm from Monday to Friday?
सोमवार से शुक्रवार तक उनके कार्यालय का समय सुबह 9 बजे से शाम 5 बजे तक होता है, तो पूरे हफ्ते का प्रतिशत पिरक्कंडू कार्यालय में खर्च करता है?
23.8%
28%
20.5%
25.8%
None of these
A

Total number of hours in a week = 24 × 7 hrs

Hours spend by Pirkandu = 5 × 8 hrs

Required percentage = 5 × 8 hrs  × 100
24 × 7 hrs

= 23.80%

Hence, option (A) is correct.

13 Anuj and Meetu work in a shop and Anuj’s salary is 5/6th of the salary of Meetu. They spend same money of Rs 2000 and after that save all the money. Find the salary of Anuj and Meetu if the ratio of their savings is 4 : 5.
अनुज और मीतु एक दुकान में काम करते हैं और अनुज का वेतन मीतु के वेतन का 5/6 वां है। वे 2000 रुपये के समान पैसे खर्च करते हैं और उसके बाद सभी पैसे बचाते हैं। अनुज और मीटू का वेतन पाएं यदि उनकी बचत का अनुपात 4: 5 है।
Rs. 10000, Rs 12000
Rs.15500, Rs 12500
Rs. 8000, Rs 10000
Rs. 11000, Rs 8000
None of these
A

Let Meetu’s salary = Rs x

Anuj’s salary = Rs 5x/ 6

According to the question,

5x/ 6 – 2000 : x – 2000 = 4 : 5

5 (5x/ 6 – 2000) = 4 (x – 2000)

25x/ 6 – 10000 = 4x – 8000

25x/ 6 – 4x = 10000 – 8000

x/ 6 = 2000

x = 12000

Anuj’s salary = Rs 10000, Meetu’s salary = Rs 12000

Hence, option A is correct.

14 The price of two apples X and Y are in the ratio of 2 : 3. X’s price increased by 20% and the total price of X and Y
together becomes Rs 175.5, with an increase of 17%. By what percent the price of Y increased?
दो सेब एक्स और वाई की कीमत 2: 3 के अनुपात में है। एक्स की कीमत में 20% की वृद्धि हुई है और एक्स और वाई की कुल कीमत
एक साथ 17% की वृद्धि के साथ 175.5 रुपये हो गया। किस प्रतिशत से वाई की कीमत में वृद्धि हुई?
18%
25%
20%
15%
None of these
D

After increment price of X and Y together = Rs 175.5

Price before increment = 175.5  × 100 = Rs 150
117
Price of apple X = 150  × 2 = Rs 60
5
Price of apple Y = 150  × 3 = Rs 90
5

X’s price increased by 20%, X’s price = 60 × 120% = Rs 72

Y’s new price = Rs.(175.5 – 72) = Rs.103.5

Y’s price increased by 103.5 – 90  × 100 = 15%
90

Hence, option D is correct.

15 . A man earns x% on the first Rs. 2,000 and y% on the rest of his income. If he earns Rs. 700 from Rs. 4,000 and Rs. 900 from Rs. 5,000 of income, find x%.
दो सेब एक्स और वाई की कीमत 2: 3 के अनुपात में है। एक्स की कीमत में 20% की वृद्धि हुई है और एक्स और वाई की कुल कीमत
एक साथ 17% की वृद्धि के साथ 175.5 रुपये हो गया। किस प्रतिशत से वाई की कीमत में वृद्धि हुई?
20%
25%
15%
Can’t be determined
None of these

C

As per the given information, two equations can be written

2000

(

x

)

 + 2000

(

y

)

 = 700      …(i)

100

100

2000

(

x

)

 + 3000

(

y

)

 = 900     …(ii)

100

100

The equations can be simplified to

x + y = 35

and 2x + 3y = 90.

After Solving these equation, we get

x = 15%

Hence, option (C) is correct.

16 In an examination Tarang got 25% marks and failed by 64 marks. If he had got 40% marks he would have secured 32 marks more than the pass marks. Find the percentage of pass marks.
दो सेब एक्स और वाई की कीमत 2: 3 के अनुपात में है। एक्स की कीमत में 20% की वृद्धि हुई है और एक्स और वाई की कुल कीमत
एक साथ 17% की वृद्धि के साथ 175.5 रुपये हो गया। किस प्रतिशत से वाई की कीमत में वृद्धि हुई?
224 marks
250 marks
150 marks
D 295 marks
None of these
A
Let the total marks = x
According to the question,
x × 25% + 64 = x × 40% – 32
x × 40% – x × 25% = 64 + 32
x × 15% = 96
x = 640
Passing marks = 640 × 25% + 64
= 160 + 64 = 224 marks

hence, option A is correct.

17 After the GST, market price of loose sugar decrease by 25% because of which Kavya now is able to buy 1 kg more sugar for Rs. 30. Find the reduced rate of sugar per kilogram.

जीएसटी के बाद, ढीली चीनी की बाजार कीमत 25% कम हो गई है, जिसके कारण कविता अब 1 किलो अधिक चीनी खरीद सकती है। 30. चीनी प्रति किलोग्राम की कम दर पाएं

A
Rs. 17 1
2
B
Rs. 7 1
2
Rs. 10
D
Rs. 7 3
10
None of these
B

Approach I:

Note: We know that

Expenditure = Price × Consumption

Keeping the expenses constant between price and consumption if one goes up, the other goes down and vice-versa.

Ex. If price goes up by 25% (1/4), then the consumption should go down by

1  = 1  = 20% to keep the expenses same.
4 + 1 5

Here, reduction in price = 25% =  1/4

= 1   = 1  = 1 kg
4 – 1 3

∴    Increase in consumption will be

Which means kavya initially used to buy 3 kg sugar for 30/-

∴   Initial price of sugar = 30  = 10/-
3

∴   Reduced price = (100 – 25)% of 10/-

= 75 × 10 = 7.5

or,  ₹ 7 1
2

Approach II:

Let the actual price of sugar be ₹ x per kg.

∴   Reduced price of sugar

According to the question,

= (100 – 25) × x  = ₹ 3x  per kg
100 4
30  – 30  = 1
3x x
4
or, 40  – 30  = 1
x x

∴    x = ₹ 10 kg

So, reduced rate of sugar per kg = 3x
4
= 3 × 10  = 15  = Rs. 7 1
4 2 2

Hence, option (B) is correct.

18 Minu gave 45% of a certain amount of money to Raman. From the money Raman received, he spent 40% on buying books and 35% on buying a watch. After the mentioned expenses, Raman has Rs. 1800 remaining. How much did Minu have initially?

मिनू ने रमन को कुछ निश्चित राशि का 45% दिया। रमन को प्राप्त धन से, उन्होंने किताबें खरीदने पर 40% और घड़ी खरीदने पर 35% खर्च किया। उल्लिखित खर्चों के बाद, रमन के पास रु। 1800 शेष शुरुआत में मिनू ने कितना किया?

Rs. 13500
Rs. 13000
C Rs. 14000
Rs. 16000
Rs. 14200
D

Approach I:

Raman spent 40% on books and 35% on buying a watch.

∵   Remaining percentage = (100 – 40 – 35)% = 25%

Remaining amount of Raman = ₹ 1800/-

∵   25% ≡ 1800

100% ≡ x

⇒  x = 1800 × 100  = 7200/-
25

Minu gave 45% of a certain amount to Raman.

∵   45% ≡ 7200

100% ≡ x

⇒  x = 7200 × 100  = 16000/-
45

Approach II:

Let the initially has Rs. 100/-

100
45% = 45/- to Raman
45
25% of 45
= 25  × 45 =
45
4
/-
100

Putting values in proportion, we get

Remaining amount : Initial amount : : Actual reamaining amount : Actual initial amount

45
4
 : 100 :: 1800 : x
∴  x = 1800 × 100 × 4   ⇒  x = 16000/-
45

Hence, option (D) is correct.

19 In two successive years, 40 and 50 students of a school appeared at the final examination of which 40% and 50% passed respectively. The average rate of students passed (in percent) is

दो लगातार वर्षों में, स्कूल के 40 और 50 छात्र अंतिम परीक्षा में दिखाई दिए, जिसमें 40% और 50% क्रमशः पारित हुए। छात्रों की औसत दर पारित हुई, दो लगातार वर्षों में, स्कूल के 40 और 50 छात्र अंतिम परीक्षा में दिखाई दिए, जिसमें 40% और 50% क्रमशः पारित हुए। पारित छात्रों की औसत दर (प्रतिशत में) (प्रतिशत में) है

45%
B
45 5  %
9
45.75%
D
45 9  %
5
None of these
B

Total examinees = 40 + 50 = 90

Total successful examinees

⇒  40% of 40 + 50% of 50

⇒  16 + 25 = 41.

∴   Reqd% = 41  × 100 = 410
90 9
=  45 5  %
9

Hence, option (B) is correct.

20 The price of A is 50% more than B. If there is 10% increase in the price of A and 25% increase in price of B, By how much is the resultant price of A more than the resultant price of B?
ए की कीमत बी से 50% अधिक है। यदि ए की कीमत में 10% की वृद्धि हुई है और बी की कीमत में 25% की वृद्धि हुई है, तो बी के परिणामी मूल्य से अधिक की परिणामी कीमत कितनी है?
40%
20%
32%
55%
None of these
C

Lets assume the price of B as 100x, so the price of A becomes 150% of 100x = 150x

As per the question there is an increase of 10% in price of A and 25% in price of B

Therefore the price of A becomes 110% of 150x = 165x

and the price of B becomes 125% of 100x = 125x

Now we can see that A is 40x more than B. This can be expressed in percentage as

40x  × 100 = 32%
125x

Hence, option (C) is correct.

21 Manish spends 17% of his monthly income in travelling. He spends 25% of his monthly income on household expenses and spends 36% of his monthly income on families medical expenses. He has remaining amount of Rs. 10032 as cash with him. What is Manish’s annual income ?
मनीष यात्रा में अपनी मासिक आय का 17% खर्च करता है। वह घरेलू खर्चों पर अपनी मासिक आय का 25% खर्च करता है और परिवार की चिकित्सा खर्चों पर अपनी मासिक आय का 36% खर्च करता है। उसके पास शेष राशि है। उसके साथ नकद के रूप में 10032। मनीष की वार्षिक आय क्या है?
Rs. 550300
Rs. 536500
Rs. 547200
Can’t be determined
E  None of these
C

Let Manish’s monthly income be Rs. 100.

Total expenditure = (17 + 25 + 36)% = 78%

∴  Savings = (100 – 78)% of 100 = Rs. 22

Now,   22 : 100 : : 10032 : x

⇒   x = 100 × 10032  = Rs. 45600
22

Manish’s monthly income = Rs. 45600

∴  Manish’s annual income = Rs. 12 × 45600  =  Rs. 547200

Hence, option (C) is correct.

22 If the numerator of fraction is increased by 200% and the denominator is increased by 350%. The resultant fraction is 5/12. What was the original fraction ?
 यदि अंश का अंश 200% बढ़ा है और denominator 350% की वृद्धि हुई है। परिणामी अंश 5/12 है। मूल अंश क्या था?
A
5
9
B
5
8
C
7
12
D
11
12
None of these
B
Let the original fraction be x
y
Then, 300% of x  = 5
450% of y 12
⇒   2x  = 5
3y 12
x   = ( 5   × 3 )   = 5
y 12 2 8

Hence, option (B) is correct.

23 In a mixture of milk and water the proportion of water by weight was 75%. If in the 60 gm mixture, 15 gm water was added, what would be the percentage of water ? (weight in gm)
दूध और पानी के मिश्रण में वजन से पानी का अनुपात 75% था। यदि 60 ग्राम मिश्रण में, 15 ग्राम पानी जोड़ा गया था, तो पानी का प्रतिशत क्या होगा? (जीएम में वजन)
75%
88%
90%
100%
None of these
E
Weight of water in the mixture of 60 gm = 60 × 75  = 45 gm
100

Weight of water in the mixture of 45 gm = 45 + 15 = 60 gm

∴  Percentage of water = 60 × 100  = 80%
75

Hence, option (E) is correct.

24 Rahul spends 50% of his monthly income on household items, 20% of his monthly income on buying clothes, 5% of his monthly income on medicines and the remaining amount of Rs. 11250 he saves. What is Rahul’s monthly income ?

राहुल घरेलू सामानों पर अपनी मासिक आय का 50% खर्च करते हैं, कपड़े खरीदने पर उनकी मासिक आय का 20%, दवाओं पर मासिक आय का 5% और शेष राशि रु। 11250 वह बचाता है। राहुल की मासिक आय क्या है?

Rs. 38200
Rs. 34000
Rs. 41600
Rs. 45000
None of these
D

Let the monthly income of Rahul be Rs. x.

Total expenditure = (50 + 20 + 5)% of x = 75% of x

Now, savings = (100 – 75)% of x = 11250

⇒   25% of x = 11250

x  = 11250
4

⇒   x = 4 × 11250  =  Rs. 45000

Hence, option (D) is correct.

25
In a college 12% of total students are interested in sports.   3 th 
4

of total students are interested in dance. 10% of total students are interested in singing and remaining 15 students are not interested in any activitiy. How many students are there in the college ?

एक कॉलेज में कुल छात्रों में से 12% खेल में रूचि रखते हैं। 3 वें
4
कुल छात्रों में नृत्य में रूचि है। कुल छात्रों में से 10% गायन में रुचि रखते हैं और शेष 15 छात्रों को किसी भी सक्रियता में रूचि नहीं है। कॉलेज में कितने छात्र हैं?
450
500
600
Can’t be determined
None of these
B

Let the total students be 100.

Interested in sports = 12% of 100 = 12

Interested in dance = 3 th of 100 = 75
4

Interested in singing = 10% of 100 = 10

∴  Remaining students = 100 – (12 + 75 + 10) = 3

Now,   3 : 100 : : 15 : x

⇒  x = 100 × 15  = 500
3

There are 500 students in the college.

Hence, option (B) is correct.

HIGH LEVEL PERCENTAGE FOR SSC GD RPF  EXAM 2018||PERCENTAGE QUESTIONS PDF HINDI 2018||